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On t h e  range of unbounded vector  valued measure 

Czedaw Olech 

Introduct ion 

Consider a vector  valued measure (S,&p),  t h a t  i s  a space 

S, a a - f i e l d  of subsets  of S and a countably addi t ive  funct ion 

p defined on c and tak ing  values from Rn i f  f i n i t e  or  i n f i n i t y  

denoted by Q). We assume t h a t  m+a = Q), c a = Q) i f  ail[ 

as n +a. 

Q) n 

i =l i i =1 

The purpose of t h i s  note i s  t o  descr ibe t h e  range of such 

measure. I n  t h e  case p ( S )  i s  f i n i t e  and t h e  measure p i s  non- 

atomic, then a r e s u l t  due t o  A.A.  Liapunov [ 4 ]  says t h a t  t h e  range 

of p i s  compact and convex. I n  t h e  case we consider,  t h e  range 

remains convex as can be eas i ly  seen from t h e  Liapunov theorem but  

need not be closed. However, we have t h e  followingr 

Theorem '1. Consider a non-atomic n-vector valued measure ( S , c , p ) .  

Then t h e  range P = p(c)  of the measure p has t h e  following prop- 

e r t i e s :  (i) P i s  convex, (ii) t h e  closure of P does not 

contain a l i n e ,  (iii) each compact extreme face of P i s  contained 
- 

i n '  P. 

Let us r e c a l l  t h a t  a subset A of a convex s e t  B i s  an 

extreme face  of B i f  f o r  any th ree  points  p1,p2,p3 E B such t h a t  

p1 = Apg+( l-h)p3, where 0 < A < 1 we have t h e  implication: 

p E A then p 

thus  i n  t h e  case 

i f  

E A .  Since B i t s e l f  i s  an extreme face of B, 

i s  compact, t h e  p a r t  (iii) of Theorem 1 implies 

2"s 

P 

1 - 
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t h a t  P = F, thus  compactness of t h e  range. 

t a i n s  as a spec ia l  case Liapunov's theorem. 

Hence Theorem 1 con- 

A proof of Theorem l i s  given i n  sect ion 2 and i s  preceded 

by a Lemma given i n  sect ion 1. 

closed subset of R , which does not contain a l i n e  has not  empty 

p ro f i l e ,  t h a t  i s ,  t h e  s e t  of extreme points.  

it follows t h a t  t he re  e x i s t  compact extreme faces  of P. I n  sect ion 

3 we discuss  i n  more d e t a i l s  some geometrical p roper t ies  of P i m -  

p l ied  by (ii) and (iii). 

Let us point  out here  t h a t  a convex 

n 

I n  p a r t i c u l a r  from (ii) 
- 

1. Denote by 1111 the t o t a l  va r i a t ions  of p. ( I f  E E c 
I pl ( E )  = sup 41p(Ei)ll, where supremum i s  taken over a l l  decom- then 

pos i t ion  of  E i n t o  d i s j o i n t  subsets [Ei) C c.) The t o t a l  var ia-  

t i o n  I pl (E)  of E i s  f i n i t e  i f  and only i f  p(E) i s  f i n i t e .  De- 

note  by Eo t h e  subset of E on which p i s  f i n i t e .  For any two 

E,F C Eo i s  t h e  sym- 

metr ic  difference.  The function P i s  a metric funct ion on c 
provided t h e  equal i ty  E = F is meant modulo I P I ,  t h a t  is, E = F 

i f  and only i f  I pl ( E  A F) = 0. The metric space (Eo, p) i s  com- 

p l e t e  (cf.  P. Halmos [ 2  3, p. 169) and t h e  map pz + R n  i s  con- 

t inuous.  

denote by P(E,F) = I pl ( E  A F), where E A F 

0' 

0 

Consider t h e  inverse map p-l :  P C R" + 2%. I n  [ 61, 

t h e  author noticed t h a t  ( i n  t h e  case P compact) p-'(e) i s  

a s ingel ton [E) i f  and only if e i s  an extreme point  of P. 

The lemma which follows generalizes t h i s  by showing t h a t  i f  

-1 e i s  close t o  an extreme point then t h e  diameter of  p ( e )  i s  

small. 
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Lemma. Let (S,Z,p) be as  i n  Theorem 1. Let e be an extreme 

point  of F = p(c). Then for each & > 0 the re  i s  6 > 0 such 

- - 
t h a t  if IIp(Ei)-ell < 6, i = 1,2, then F(ElyEe) < & .  

'Pro'o'f: There i s  a b a s i s  i n  Rn such t h a t  e i s  t h e  lexicographi- 

tal maximum of P w i t h  respect t o  t h i s  b a s i s  ( c f .  ( 5  1). Without 

- 

any loss of gene ra l i t y  we may assume t h i s  b a s i s  t o  be t h e  na tu ra l  

b a s i s  of R . Thus i f  (ely. ..,en) a r e  coordinates of e then we n 

have 

el = max (x,l( xl,.. . ,x,) E F) 

Since F i s  convex and closed t h e  maximum i n  (1.2) i s  con- 

t inuous funct ion of ely...yei-l, t he re fo re  f o r  each k d n and any 

y > 0 the re  a r e  

implication holds: 

pos i t i ve  such t h a t  t h e  following Y&) 9 'k- 1, k 

(1.3k) i f  ( x  ly...yx ) E P and lxi-eil < yi, i = l,...,k-l then n 

x < e +y. k k  

Suppose CI = (Ply  0 *yPn),  Pi a r e  r e a l  valued countably 

addi t ive  functions defined on . For each i = 1,2,. . .,n I pil ( E )  

i s  t h e  t o t a l  va r i a t ion  of 

0 

pi(E) and i s  defined i n  t h e  same way a s  



c 
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I pi 

each E E coo 
& > 0 there exists 6 > 0 such that for any two E1,E2 E co the 

inequalities 

It is easy to check the inequality 1 pl (E) 5 Zil pi! (E) for 

Thus we will prove the lemma if we show that for each 

lpi(Ej)-eil < 6 i = 1,2,000,n, j = 1,2 

Suppose that the above implication does not hold f o r  some 

i and let i=k be the smallest oneo Hence, for  each & > 0 there 

is Eo> 0 such that for each 6 < = 6o the inequalities ( 104) implies 

(1.5) if i = l,ooe,k-l while for  i=k there is &o > 0 such that 

for  each 6 S 6o there exists E .( 6) E Eo such that (1.4) holds 

but 
J 

Set y, in (103k) to be smaller than & /4, choose & < 
0 

(1/2) min(y & /4) and 6 <&.  ik’ 0 

From (1.6) we conclude that there is G E Eo such that 

either G C El\E2 or  G C E2 \ El and 1 pk(G)I 2 e0 /2 .  To fix 
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t h e  idea suppose G C E1\E2 and pk(G) 2 Eo/2. Then E2 f l  G = @, 

p ( E  U G) = pk(E2)+pk(G) 2 e 6 + Cd2 > ek+ &o/4  > ek+8. k 2  k- 

by (1.4) and ( L 5 )  

I pi! (E2 A El) < 6+& 5 2& 5 yike 

(1.3k) applied t o  

6 

While 

I pi(E2 U G)-eil 5 I pi(E2)-eil + I pi(G) I 5 6 + 

Thus we have a contradict ion with 

x = p(E2 U G) E H. Hence (1.4) implies ( le?) i f  

i s  small  enough and t h e  proof of t h e  Lemma i s  completed. 

- 
Corollary. If e E P i s  an extreme point  of P then the re  i s  

E E Eo such t h a t  p(E) = e. Thus e E: P. 

follows t h a t  p(E) = e, w h a t  was t o  be 

2. Proof of Theorem 1. If 

i s  a a - f i e l d  of subsets  of E and p 

f i n i t e  and of course non-atomic. Thus 

applied and p ( 5 )  i s  concluded t o  be 

i n  P. Let now E1,E2 E Eo. Then E = 

Proof: Since e E P t h e r e  i s  a sequence (Ei] C Eo such ' tha t  

p(Ei) + = e .  By t h e  Lemma it follows t h a t  t h i s  sequence (Ei] i s  

a Cauchy sequence i n  t h e  metric space (co, p) and s ince t h e  l a t t e r  

i s  complete {Ei] has t h e  limit E E coo By cont inui ty  of p it 

- 

proved . 
E E Eo then 5 = (F n EIF E c) 

r e s t r i c t e d  t o  5 i s  t o t a l l y  

Liapunov's theorem can be 

convex and of course contained 

El U E2 E Eo a l s o  and 

p(Ei) E p(&) C P. But p(&) i s  convex and therefore  Xp(E1) + 

( l-h)p(E2) E P f o r  each 0 < h < 1, which proves convexity of P. 

To prove p a r t  (ii) l e t  us suppose t h e  contrary3 t h a t  i s ,  

n suppose the re  i s  a E R , IIall = 1 such t h a t  

ha E f o r  each h r ea l .  
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(Note t h a t  i f  P contains a l ine  then the  p a r a l l e l  l i n e  through 
- 

any point  of i s  a l s o  contained i n  P. Since 0 E P thus  t h e  

contradict ion of  (ii) implies (2.1)) 

I n  t h i s  case we can choose a sequence {Ei] i = 2 1, 2 , 0 0 0  

of  d i s j o i n t  s e t s  from c such t h a t  

( 2 4  p(Ei) = ( s g n  i ) a  + &i 

where 

T h i s  c l e a r l y  w i l l  contradict  t h e  a d d i t i v i t y  of t h e  measure 

p, since the  measure of UE could not be uniquely determined. i i  

By (2.1) it i s  c lear  t h a t  El can be chosen. To use in-  

duct ion argument assume t h a t  E , E - l , ~ ~ a , E n , E - n  a r e  chosen and (2.2) 
n 1 

and 

E €  

P =  

+ l,ooe,- n,o Put E = U Ei manifestly . +  I = -  
I il =1 

i s  compact. It i s  a l s o  easy t o  see t h a t  

and therefore  

From (2.1) and (2.4) it 

each r e a l  h. Indeed, l e t  us f i x  

follows t h a t  ha E p ( G u )  f o r  

A. For each in teger  k the re  

such t h a t  fk+gk = ma. But 
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p ( G )  i s  compact therefore  fk/k + 0 as k + CQ, Hence gk/k + ha 

as k + 00, Since p(GU) i s  convex and contains 0 thus gk/k E 

does and t h e  closedness of t h e  l a t t e r  s e t  gives us i f  % p(cs\E) 

t h e  desired conclusion, Therefore we may choose En+l C S\E such 

t h a t  (2,2) and (2.3) a r e  s a t i s f i e d  a l s o  f o r  i = n+l. This completes 

t h e  proof of (ii). 

To prove (iii) suppose B i s  a compact extreme face of 

n - 
P. I n  p a r t i c u l a r  B i s  compact convex subset of R and each ex- 

- 
treme point of B i s  an extreme point of P. Thus t h e  s e t  B of 

a l l  extreme points  of B, by the Corollary, i s  contained i n  P. 

Since P i s  convex, therefore  t h e  convex h u l l  o f  'ri i s  a l s o  con- 

ta ined i n  P. But t h e  convex h u l l  of : i s  Bo Hence B C P and 

t h e  proof of (iii) i s  completed. 

Remark. 

measure but only of convexity par t ,  Par t  (iii) of Theorem 1 or  

r a t h e r  t h e  Corollary of Section 1 i n  t h e  bounded case were obtained 

by Blackwell ( c f .  [ 

I n  proving (ii) we made use of Liapunov theorem for f i n i t e  

1, Theorem 4) 
- 3. Denote by C the asymptotic cone of Pg t h a t  i s  

Since f; does not contain a l i n e ,  i s  closed and convex 

therefore  C i s  a proper closed convex cone, Consider the  polar 

Co of C; t h a t  i s  
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(3.2) Co = (d E R n I <d,c > 5 0 f o r  each c E C) 

Suppose d E Rn i s  such t h a t  sup - < d,p > < +CO then 
p E F  

d E Coo Indeed if d does not belong t o  Co then the re  i s  c E C 

such t h a t  < d,c > > 0 and t h i s  together  with (3.1) implies t h a t  

sup < d,p > = +coo It i s  easy t o  see t h a t  i f  C i s  proper, closed - 
p E F  

convex cone then i n t  Co i s  n o t  empty, f o r  each d E i n t  Co t he re  

e x i s t s  max < d,p > and t h e  s e t  B(d)  = ( p  E TI < d,p > = max < d,p > 

i s  compact ( c f .  f o r  example [ 3 1 ) .  

e x i s t s  f o r  a d from t h e  boundary of C then t h e  corresponding 

s e t  B(d) i s  unbounded. I n  fact ,  one can show t h a t  t h e  asymptotic 

cone C(d) of B(d)  i s  given by ( c  E C l <  d,c > = 0) .  Manifestly 

B(d) i s  an extreme face  of P f o r  each d E C . 

p € F  p € F  
On t h e  other  hand i f  t h e  max < d,p > 

p E H  
0 

0 .  

I n  pa r t i cu la r ,  it follows from the  above discussion t h a t  
- 

(ii) implies t h e  exis tence of a compact extreme face  of P. 

With each convex cone C i n  Rn we can assoc ia te  an order 

i n  Rn by defining: x 5 y i f f  y-x E C. Let A C Rn, a point  

a E A i s  ca l led  a minimal point of A i f  f o r  each b E A t h e  in-  

equal i ty  b 5 a implies t h e  equal i ty  a = b. 

We can prove now a theorem which descr ibes  t h e  range of 

a vector-valued measure from some other  point  of view. 

Theorem 2. Let (S,Z,p) be l i ke  i n  Theorem 1. Then t h e  range 

P = ,(E) i s  convex, t h e  asymptotic cone C of H i s  proper, convex 

and closed and f o r  each p € 7 t h e r e  i s  p,, € P, p,, 5 p, t h a t  i s  
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- 
p-p* E C. I n  pa r t i cu la r ,  each minimal point  of P belongs t o  P. 

'proof: Consider t h e  s e t  

Q = H fl ( (  p)-C) . p E H), convex 

compact. It c l e a r l y  i s  closed and convex. If it were unbounded 

- 
We claim it i s  nonempty ( s i n c e  and 

t h e r e  would e x i s t  a f 0 such t h a t  (p+Aa) A 2 0) C Q. That would 

mean t h a t  c E C (cf.  (3.1)) as wel l  as 

s ince C I7 (-0) = (0) .  Take now any d E i n t  Co and def ine 

c E -C, which i s  impossible 

For each p* E Q1 we have the  inequa l i ty  p, 5 p. 

On t h e  other  hand l e t  B be t h e  smallest  closed extreme 

face  of containing p,. For each b E B the re  i s  > 0 such 

t h a t  p = p* + h(b-p*) E B f o r  A E [ - E , + & ] .  I n  f a c t ,  i f  I = 

(p*h(b-p,)l -& 5 h < 0) were d i s j o i n t  w i t h  B then the re  would e x i s t  

a hyperplane TT separat ing I and B. But i n  t h a t  case TT fl B 

would be an extreme face  o f  Y containing p, but not containing 

b, hence smaller than B. Suppose now B i s  unbounded, then the re  

e x i s t  c E C such t h a t  p,+Ac E B Tor X Z 0, thus the re  e x i s t  

& > 0 such p,-&c = p e B. Since d E i n t  Co, therefore  < d,c > < 0. 

Hence 

poss ib le  because p 5 p < p and thus  p1 E: Q. So B i s  compact 

extreme face of p and as such by (iii) i s  contained i n  P. Hence 

p* E P what was t o  be proved. If p i s  a minimal point  of P then 

1 

< d,pl > = < d,p* > - & < d , c  > > < d,p,>. The l a t t e r  i s  i m -  

1 -  * 

- 
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p* = p, therefore  p E P. 

We will f in i sh  with a few examples. 

Examp'le' 1. Let S = [0,1], c t h e  Lebesgue measurable subsets  of 

r O , l ]  and P = (p1,p2) defined by 

The range 

x1 = 0 i f  x2 = 0 ) .  Therefore only ( 0 , O )  belongs t o  P from 

t h e  boundary of P and P i s  not  closed. The cone C = P i n  t h i s  

case and (0,O) i s  t h e  unique minimal point of P. 

P i n  t h i s  case i s  ( (x1,x2)( I x d  < x2 i f  x2 > 0, 

- 

Example 2. Let S,c be as above. 

I n  t h i s  case P i s  closed and equal  ( ( x  x )I lxll S x2) 1' 2 

Example 3 .  Again S,c 

P(E) = 

Now P i s  contained i n  

bounded, therefore  C = 

are  a s  i n  Example 1 

( (  x1,x2)1 x2 2 0, 1 xll 5 a)  and i s  un- 

((x1,x2)1 x1 = 0, x 2 0) and Co = 2 -  
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((x1,x2)1 x2 5 0) .  

t i o n s  dl = .(-1,O) and d2 = (1,O) 

On t h e  boundary of Co we have two d i f f e r e n t  d i rec-  

sup < d2,p > = sup /E( 1 - 2 7 ) d ~ / ~ ’ / ~ (  1--r)’I2 = 
. P E P  E c to&] 

Since /1/2dT/T(l-T) = m, thus  B(d2) i s  empty and so i s  B(dl) for 
0 

t h e  same reason. 

Therefore we can conclude i n  t h i s  case t h a t  

s ince each point  of t h e  boundary of P belongs t o  a B(d) f o r  

d E i n t  C , thus  belongs t o  a compact extreme face  of P. Hence 

i s  i n  P and P = P. 

P i s  closed, 

0 - 
- - 

I n  general  we have the following 

Theorem 3. Let (S,c,p) and P be l i k e  i n  Theorem 1. If t h e  s e t  

D = (dld f 0 and t h e  max < d,p > ex i s t s )  i s  open, then P i s  
PEP - 

closed. 

Proof: 

D C Co. 

i n  example 3, i f  p E ar; t h e n  the re  i s  d E D 

max < p,d >. Hence p E B(d ) .  But d E i n t  Co thus  Btd )  i s  com- 

pact and by (iii) of Theorem 1 B ( d )  C P and consequently p, E P. 

P = P what was t o  be proved. 

It follows from t h e  discussion o f  t h i s  sect ion t h a t  i n t  Co C - 
0 Thus i f  D i s  open then D = i n t  C . On t h e  other  hand, i i k e  

such t h a t  < po,d > = 0 

0 PET 

Thus 
- 
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